技術(shù)文章
Technical articles
熱門搜索:
P760/01_2760nm單模垂直腔面發(fā)射激光器
VCSEL-20-M激光控制驅(qū)動(dòng)器
ZNSP25.4-1IR拋光硫化鋅(ZnS)多光譜(透明)窗片 0.37-13.5um 25.4X1.0mm(晶體/棱鏡
Frequad-W-CW DUV 單頻連續(xù)激光器 213nm 10mW Frequad-W
2x4 QPSK C波段相干混頻器(信號(hào)解調(diào)/鎖相放大器等)
ER40-6/125截止波長(zhǎng)1300nm 高摻雜EDF摻鉺光纖
SNA-4-FC-UPC日本精工法蘭FC/UPC(連接器/光纖束/光纜)
GD5210Y-2-2-TO46905nm 硅雪崩光電二極管 400-1100nm
WISTSense Point 緊湊型高精度光纖傳感器解調(diào)儀(信號(hào)解調(diào)/鎖相放大器等)
CO2激光光譜分析儀
1030nm超短脈沖種子激光器PS-PSL-1030
FLEX-BF裸光纖研磨機(jī)
350-2000nm 1倍紅外觀察鏡
NANOFIBER-400-9-SA干涉型單模微納光纖傳感器 1270-2000nm
高能激光光譜光束組合的光柵 (色散勻化片)
S+C+L波段 160nm可調(diào)諧帶通濾波器
更新時(shí)間:2026-02-04
點(diǎn)擊次數(shù):27
研究背景
隨著超短強(qiáng)激光技術(shù)的成熟,激光峰值功率已達(dá)到拍瓦量級(jí),并正向艾瓦乃至澤瓦邁進(jìn)。然而,傳統(tǒng)固體光學(xué)元件固有的損傷閾值限制了其可操控的激光強(qiáng)度上限,使得許多依賴光強(qiáng)的前沿物理研究遭遇瓶頸。相比之下,等離子體作為一種光學(xué)介質(zhì),其損傷閾值比固體材料高出數(shù)個(gè)數(shù)量級(jí),為操控相對(duì)論強(qiáng)度激光脈沖提供了機(jī)遇。近年來,等離子體光柵、等離子體鏡、等離子體全息術(shù)等一系列等離子體光學(xué)元件相繼被提出,展現(xiàn)出等離子體在調(diào)控激光波前、偏振與強(qiáng)度方面的巨大潛力。作為應(yīng)用廣泛的衍射光學(xué)元件之一,菲涅爾波帶片自問世以來便持續(xù)受到廣泛關(guān)注。其聚焦特性可用于光束整形,實(shí)現(xiàn)對(duì)發(fā)散光束的準(zhǔn)直處理。在此背景下,研究團(tuán)隊(duì)創(chuàng)新性地將FZP的結(jié)構(gòu)設(shè)計(jì)引入等離子體光學(xué)領(lǐng)域,設(shè)計(jì)出一種微結(jié)構(gòu)等離子體FZP靶,成功實(shí)現(xiàn)了強(qiáng)度緊聚焦激光脈沖的產(chǎn)生。
研究創(chuàng)新點(diǎn)
該研究提出并系統(tǒng)驗(yàn)證了一種基于微結(jié)構(gòu)等離子體FZP靶的激光聚焦方案。通過三維PIC模擬,詳細(xì)分析了該方案的物理過程、靶的性能以及方案的魯棒性。方案示意圖如圖1所示。
光斑尺寸為15 μm、歸一化電場(chǎng)振幅a0 = 250的高斯激光脈沖正入射至透射式奇數(shù)型FZP(TO-FZP)靶上。該靶由電離的碳離子和氫離子構(gòu)成,電子密度為250nc。圖中黑色區(qū)域代表等離子體區(qū),可阻擋入射光傳播;白色區(qū)域代表真空區(qū),激光脈沖可自由通過。通過對(duì)環(huán)帶半徑進(jìn)行精密設(shè)計(jì),使從相鄰?fù)该鲄^(qū)出射的光到達(dá)焦點(diǎn)處的光程差恰好為激光波長(zhǎng),對(duì)應(yīng)的相位差為2π,從而在焦點(diǎn)處發(fā)生相長(zhǎng)干涉,實(shí)現(xiàn)高效聚焦。這種基于等離子體的衍射光學(xué)元件,有望突破傳統(tǒng)光學(xué)材料的強(qiáng)度極限,實(shí)現(xiàn)對(duì)拍瓦乃至更高功率激光的聚焦。

圖 1 方案示意圖
模擬結(jié)果表明,相對(duì)論激光(強(qiáng)度約8.6×1022 W/cm2)與等離子體靶相互作用后,一部分激光穿過靶,另一部分則被反射。靶的特殊結(jié)構(gòu)使得輸出激光之間的相位差為2π的整數(shù)倍,從而在穿過FZP后形成干涉場(chǎng)。在后續(xù)傳播過程中,透射激光逐漸聚焦,其峰值電場(chǎng)振幅增強(qiáng)至入射激光的約5倍,對(duì)應(yīng)的峰值強(qiáng)度超過4.2×1024 W/cm2。同時(shí),輸出激光光斑尺寸被聚焦至0.73 μm,接近于0.61 μm的理論衍射極限。能量傳輸效率穩(wěn)定在10%左右,對(duì)應(yīng)的激光能量密度增強(qiáng)因子達(dá)到46。基于菲涅爾-基爾霍夫衍射公式的理論預(yù)測(cè)的電場(chǎng)振幅大值與模擬結(jié)果高度吻合,驗(yàn)證了該聚焦機(jī)制的物理可行性。此外,通過將輸出激光的電場(chǎng)振幅與擬合高斯曲線對(duì)比(圖2(e)),可以看出輸出激光保留了輸入激光的波形特征。

圖 2 (a) t = 24T0時(shí)刻(T0為激光周期),輸出激光橫向電場(chǎng)Ey的三維等值面分布。左側(cè)圖為x = 16.45 µm處Ey在(y, z)平面上的投影。底部圖為z = 0 µm處坡印廷矢量在(x, y)平面上的投影。背面圖為y = 0 µm處激光強(qiáng)度在(x, z)平面上的投影。(b)-(d) t = 19T0、24T0和26T0時(shí)輸出激光Ey的分布。(e) t = 24T0時(shí)輸出激光Ey沿y軸(藍(lán))和z軸(紅)的分布,黑色虛線表示使用相同電場(chǎng)值和焦點(diǎn)尺寸擬合得到的高斯曲線。(f) 激光脈沖的能量傳輸效率(η,黑)和輸出與輸入激光的強(qiáng)度比(I/I0,紅)。(g) 輸出激光強(qiáng)度在x = 16.45 µm和t = 24T0時(shí)的橫截面分布。
此外,研究進(jìn)一步探討了反射式偶數(shù)型等離子體菲涅爾波帶片(RE-FZP)的潛力。如圖3(a)所示,該靶與圖 3(d)中的透射式靶具有相同的環(huán)帶數(shù)和橫向尺寸,但其厚度顯著增加。對(duì)于反射式靶,所有區(qū)域的透射率降為零,且奇數(shù)區(qū)和偶數(shù)區(qū)之間存在特定的厚度差。模擬結(jié)果顯示,該反射式靶可將激光聚焦強(qiáng)度提升至1025 W/cm2以上,同時(shí)將能量傳輸效率提高至約15.4%。盡管反射式FZP能利用更多的入射激光能量,但可能在實(shí)驗(yàn)中帶來激光信號(hào)探測(cè)與前置光學(xué)設(shè)備防護(hù)方面的挑戰(zhàn)。

圖 3 (a) 反射式偶數(shù)型菲涅爾波帶片 (RE-FZP) 在(x, y)平面的構(gòu)型。(b) RE- FZP相對(duì)應(yīng)的輸出激光的橫向電場(chǎng)Ey在(x, y)平面上的分布。(c)與(b)相同,對(duì)應(yīng)(y, z)平面。(d)-(f)與(a)-(c)相同,對(duì)應(yīng)于透射式偶數(shù)型菲涅爾波帶片(TE- FZP)。
圖4匯總了多種基于激光等離子體相互作用的激光強(qiáng)度提升方案,其中星標(biāo)表示本研究方案所取得的結(jié)果。該方案在百拍瓦級(jí)激光裝置中展現(xiàn)出應(yīng)用潛力。

圖 4 不同激光聚焦和放大方案的比較。包括:微管等離子體透鏡 (MTP)、相對(duì)等離子體孔徑 (RPA)、周期性薄縫 (PTS)、等離子體區(qū)板 (PZP)、等離子體通道、等離子體鏡、空心固體等離子體錐、中等密度等離子體 (MDP)、等離子體透鏡、受激布里淵反向散射 (SBS)、以及我們提出的 TO-FZP 和 RE-FZP 方案。
結(jié)論
研究團(tuán)隊(duì)提出了一種新方案,利用強(qiáng)激光與微結(jié)構(gòu)等離子體菲涅爾波帶片靶的相互作用,產(chǎn)生接近衍射極限的高強(qiáng)度緊聚焦激光脈沖。三維粒子模擬結(jié)果顯示,采用該微結(jié)構(gòu)等離子體靶可將激光強(qiáng)度提升兩個(gè)數(shù)量級(jí),峰值強(qiáng)度超過1024 W/cm2,且輸出激光的焦斑尺寸僅為輸入尺寸的4.8%。該微結(jié)構(gòu)等離子體靶對(duì)激光和靶參數(shù)均表現(xiàn)出較好的魯棒性。研究還表明,采用反射式等離子體靶可進(jìn)一步將激光強(qiáng)度提升至1025 W/cm2量級(jí)。這種微結(jié)構(gòu)等離子體靶可應(yīng)用于多個(gè)前沿領(lǐng)域,如真空雙折射、QED 級(jí)聯(lián)以及強(qiáng)場(chǎng)中光與物質(zhì)相互作用的量子特性。
參考文獻(xiàn): 中國(guó)光學(xué)期刊網(wǎng)
您好,可以免費(fèi)咨詢技術(shù)客服[Daisy]
筱曉(上海)光子技術(shù)有限公司
歡迎大家給我們留言,私信我們會(huì)詳細(xì)解答,分享產(chǎn)品鏈接給您。
免責(zé)聲明:
資訊內(nèi)容來源于互聯(lián)網(wǎng),不代表本網(wǎng)站及新媒體平臺(tái)贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé)。如對(duì)文、圖等版權(quán)問題存在異議的,請(qǐng)聯(lián)系我們將協(xié)調(diào)給予刪除處理。行業(yè)資訊僅供參考,不存在競(jìng)爭(zhēng)的經(jīng)濟(jì)利益。